Data Representation: Millions of Colors

1 101 Download(s)

Lesson synopsis

Display devices on cellphones, tablets and computers of all sizes, use bits of information to represent color. By first creating, and then playing a card game, students learn how additive color is represented as binary and hexadecimal numbers. They will also get practice in recognizing and manipulating binary and hexadecimal representations.

Age Levels

14 - 17 years


Introduce students to:
number systems used in computing: binary, hexadecimal.
how color is displayed on digital devices.
how and why additive color is represented as a single number.
why there are millions of colors available on mobile devices and computer screens.

Anticipated learner outcomes

Students will demonstrate/explain:
how information is stored in binary, and represented in hexadecimal form.
how additive color is represented in binary and hexadecimal.
how to add and subtract hexadecimal numbers.

Optional Writing Activity

Write a short report summarizing how additive color is represented in digital computers.
MATLAB graph
Cleve Moler

Cleve Moler improved the quality and accessibility of mathematical software and created a highly respected software system called MATLAB. He was a professor of mathematics and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. In the late 1970’s to early 1980’s he developed several mathematical software packages to support computational science and engineering. These packages eventually formed the basis of MATLAB, a programming environment for algorithm development, data analysis, visualization, and numerical computation. MATLAB can be used to solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. Today, Professor Moler spends his time writing books, articles, and MATLAB programs.

Listen to what Professor Moler has to say about his life’s work:

King's Quest
Roberta Williams

Video games immerse users in a world of high tech thrills, stunning visuals, unique challenges, and interactivity. They enable users to become a warrior princess or a gruesome ghoul, create a virtual persona, or even develop worlds that other gamers can play on. But before the games of today became reality, they were the dreams of a few innovative individuals.

Roberta Williams is considered one of the pioneers of gaming as we know it today. During the 80’s and 90’s along with husband Ken Williams through their company On-Line Systems, she developed some of the first graphical adventure games. These included such titles as Mystery House, Wizard and the Princess and the popular King’s Quest series. Williams also helped introduce more girls and women to the world of gaming by bringing games developed from a woman’s perspective to mainstream market.

Gordon and SenseCam QUT
Gordon Bell
Gordon and SenseCam QUT

Gordon Bell is a pioneering computer designer with an influential career in industry, academia and government. He graduated from MIT with a degree in electrical engineering. From 1960, at Digital Equipment Corporation (DEC), he designed the first mini- and time-sharing computers and was responsible for DEC's VAX as Vice President of R&D, with a 6 year sabbatical at Carnegie Mellon University. In 1987, as NSF’s first, Ass't Director for Computing (CISE), he led the National Research Network panel that became the Internet. Bell maintains three interests: computing, lifelogging, and startup companies—advising over 100 companies. He is a Fellow of the, Association of Computing Machinery, Institute of Electrical and Electronic Engineers, and four academies. He received The 1991 National Medal of Technology. He is a founding trustee of the Computer History Museum, Mountain View, CA. and is an Researcher Emeritus at Microsoft. His 3 word descriptor: Computing my life; computing, my life.

First computer mouse
Douglas Engelbart
Douglas Engelbart

In 1967, Douglas Engelbart applied for a patent for an "X-Y position indicator for a display system," which he and his team developed at the Stanford Research Institute (SRI) in Menlo Park, California. The device, a small, wooden box with two metal wheels, was nicknamed a "mouse" because a cable trailing out of the one end resembled a tail.

In addition to the first computer mouse, Engelbart’s team developed computer interface concepts that led to the GUI interface, and were integral to the development of ARPANET--the precursor to today’s Internet. Engelbart received his bachelor’s degree in electrical engineering from Oregon State University in 1948, followed by an MS in 1953 and a Ph.D. in 1955 both from the University of California, Berkeley.

James Dammann

If you have used a word processor today, moved your mouse on your laptop, dragged an object around on your smartphone, or highlighted a section of text on your tablet, you can thank Jim Dammann. In 1961 during his second year at IBM and just one year after completing his PhD, Jim created the concept of what today we all take for granted -- the cursor. This idea he documented in utilizing the cursor within word processing operations.

After retiring from IBM, Jim went on to inspire future generations of software engineers at Florida Atlantic University. His work there too demonstrated his creativity for he spent considerable effort enhancing their software engineering program by integrating ideas and feedback from local industries into the University curricular. Today, Jim lives in the Westlake Hills west of Austin Texas and spends most of his time in his art studio. He wrote and published The Opaque Decanter, a collection of poems about art, which provided a new view at part of art history.

Image credits