Data Representation: Millions of Colors

794 Download(s)

Lesson synopsis

crayons
Display devices on cellphones, tablets and computers of all sizes, use bits of information to represent color. By first creating, and then playing a card game, students learn how additive color is represented as binary and hexadecimal numbers. They will also get practice in recognizing and manipulating binary and hexadecimal representations.

Age Levels

14 - 17 years

Objectives

Introduce students to:
number systems used in computing: binary, hexadecimal.
how color is displayed on digital devices.
how and why additive color is represented as a single number.
why there are millions of colors available on mobile devices and computer screens.

Anticipated learner outcomes

Students will demonstrate/explain:
how information is stored in binary, and represented in hexadecimal form.
how additive color is represented in binary and hexadecimal.
how to add and subtract hexadecimal numbers.

Optional Writing Activity

Write a short report summarizing how additive color is represented in digital computers.
Punch card from a COBOL program
Jean Sammet

Jean E. Sammet was one of the first developers and researchers in programming languages. During the 1950’s - 1960’s she supervised the first scientific programming group for Sperry Gyroscope Co. and served as a key member of the original COBOL (COmmon Business-Oriented Language) committee at Sylvania Electric Products. She also taught one of the first graduate programming courses in the country at Adelphi College. After joining IBM in 1961, she developed and directed the first FORMAC (FORmula MAnipulation Compiler). This was the first widely used general language and system for manipulating nonnumeric algebraic expressions. In 1979 she began handling Ada activities for IBM’s Federal Systems Division. Ada is a structured, object-oriented high-level computer programming language, designed for large, long-lived applications, where reliability and efficiency are paramount. Jean has a B.A. from Mount Holyoke College and an M.A. from the University of Illinois, both in Mathematics. She received an honorary D.Sc. from Mount Holyoke (1978).

Liz Gerber - Image credit Lisa Beth Anderson
Liz Gerber
Liz Gerber - Image credit Lisa Beth Anderson

Liz Gerber earned her MS and PhD in Product Design and Management Science and Engineering at Stanford. She specializes in design and human-computer interaction, particularly how social computing supports the innovation process. Her current research investigates crowd-funding as a mechanism for reducing disparities in entrepreneurship.
Gerber's work funded by the US National Science Foundation and the National Collegiate Inventors and Innovators Alliance has appeared in peer-reviewed journals, including Transactions on Computer Human Interactions, Design Studies, and Organization Science.
As an award-winning teacher and researcher, Liz has touched the lives of more than 6,000 students through her teaching at Northwestern's Segal Design Institute and Stanford University's Hasso Plattner's Institute of Design and through her paradigm-shifting creation, Design for America, a national network of students using design to tackle social challenges.

Image credit - Lisa Beth Anderson

@ symbol
Ray Tomlinson
Ray Tomlinson

Have you ever considered that someone, at some point, was in a position to choose what symbol would be used separate the user from their location in an email address? That person, it turns out, was Ray Tomlinson, and in 1971 he chose "@". Tomlinson is credited with demonstrating the first email sent between computers on a network, and when asked what inspired him to make this selection he said, “Mostly because it seemed like a neat idea.”

After completing his Master’s degree at MIT in 1965, Ray joined the Information Sciences Division of Bolt Beranek and Newman Inc. of Cambridge, Massachusetts. Since then he has made many notable contributions to the world of network computing. He was a co-developer of the TENEX computer system that was popular in the earliest days of the Internet; he developed the packet radio protocols used in the earliest internetworking experiments; he created the first implementation of TCP; and he was the principle designer of the first workstation attached to the Internet.

Gordon and SenseCam QUT
Gordon Bell
Gordon and SenseCam QUT

Gordon Bell is a pioneering computer designer with an influential career in industry, academia and government. He graduated from MIT with a degree in electrical engineering. From 1960, at Digital Equipment Corporation (DEC), he designed the first mini- and time-sharing computers and was responsible for DEC's VAX as Vice President of R&D, with a 6 year sabbatical at Carnegie Mellon University. In 1987, as NSF’s first, Ass't Director for Computing (CISE), he led the National Research Network panel that became the Internet. Bell maintains three interests: computing, lifelogging, and startup companies—advising over 100 companies. He is a Fellow of the, Association of Computing Machinery, Institute of Electrical and Electronic Engineers, and four academies. He received The 1991 National Medal of Technology. He is a founding trustee of the Computer History Museum, Mountain View, CA. and is an Researcher Emeritus at Microsoft. His 3 word descriptor: Computing my life; computing, my life.

RISC processor
John Hennessy
John Hennessy

Have you ever wondered how computers can execute complex commands in mere seconds? John Hennessy is a pioneer of reduced instruction set computing (RISC) architecture which employs small, highly-optimized sets of instructions to greatly enhance computer performance. He was instrumental in transferring the technology, specifically MIPS RISC architecture, to industry. He co-founded MIPS Technologies and co-authored the classic textbook with David A. Patterson, on Computer Architecture.

As Stanford faculty he rose to be the Chairman of the Computer Science Department, Dean of the School of Engineering, then Provost and finally the President of Stanford in 2000 (and till date). Hennessy holds a Master’s and Ph.D. in Computer Science from SUNY Stony Brook. He is an IEEE Fellow and was selected to receive the IEEE Medal of Honor in 2012. Hennessey also launched significant activities that helped to foster interdisciplinary research in the biosciences and bioengineering at Stanford.

Image credits