Virtual Reality and Anaglyph Stereoscopic Technology

0 Review(s)
282 Download(s)
Rate & Review

Lesson synopsis

3D glassesWith the mass production and availability of low cost and robust head-mounted displays (HMDs), there has been increasing interest in virtual reality technologies - for example the Oculus Rift, HTC Vive, Samsung VR Gear, Microsoft HoloLens, and Sony’s PlayStation VR. These display technologies are based around artificial stereo images, and provide a view with illusions of 3D depth in virtual environments. Students will use the scientific method to study ‘anaglyph’ (movie 3D) technologies to model computer science design and learn how stereo images create the illusion of 3D.

Age Levels

11 - 14 years


Introduce students to
how VR technologies exploit human depth perception,
the use of stereo images to provide the illusion of 3D depth,
use the scientific method to compare anaglyph technologies.

Anticipated learner outcomes

Students will be able to
explain how VR technologies are based on stereoscopic images
explain how anaglyph technology provides the illusion of 3D
analyze the trade-offs between green/red, and red/cyan techniques
demonstrate how to align two images to create 3D illusions.

Rate this lesson plan

Add new review

First computer mouse
Douglas Engelbart
Douglas Engelbart

In 1967, Douglas Engelbart applied for a patent for an "X-Y position indicator for a display system," which he and his team developed at the Stanford Research Institute (SRI) in Menlo Park, California. The device, a small, wooden box with two metal wheels, was nicknamed a "mouse" because a cable trailing out of the one end resembled a tail.

In addition to the first computer mouse, Engelbart’s team developed computer interface concepts that led to the GUI interface, and were integral to the development of ARPANET--the precursor to today’s Internet. Engelbart received his bachelor’s degree in electrical engineering from Oregon State University in 1948, followed by an MS in 1953 and a Ph.D. in 1955 both from the University of California, Berkeley.

Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

James Dammann

If you have used a word processor today, moved your mouse on your laptop, dragged an object around on your smartphone, or highlighted a section of text on your tablet, you can thank Jim Dammann. In 1961 during his second year at IBM and just one year after completing his PhD, Jim created the concept of what today we all take for granted -- the cursor. This idea he documented in utilizing the cursor within word processing operations.

After retiring from IBM, Jim went on to inspire future generations of software engineers at Florida Atlantic University. His work there too demonstrated his creativity for he spent considerable effort enhancing their software engineering program by integrating ideas and feedback from local industries into the University curricular. Today, Jim lives in the Westlake Hills west of Austin Texas and spends most of his time in his art studio. He wrote and published The Opaque Decanter, a collection of poems about art, which provided a new view at part of art history.

King's Quest
Roberta Williams

Video games immerse users in a world of high tech thrills, stunning visuals, unique challenges, and interactivity. They enable users to become a warrior princess or a gruesome ghoul, create a virtual persona, or even develop worlds that other gamers can play on. But before the games of today became reality, they were the dreams of a few innovative individuals.

Roberta Williams is considered one of the pioneers of gaming as we know it today. During the 80’s and 90’s along with husband Ken Williams through their company On-Line Systems, she developed some of the first graphical adventure games. These included such titles as Mystery House, Wizard and the Princess and the popular King’s Quest series. Williams also helped introduce more girls and women to the world of gaming by bringing games developed from a woman’s perspective to mainstream market.

MATLAB graph
Cleve Moler

Cleve Moler improved the quality and accessibility of mathematical software and created a highly respected software system called MATLAB. He was a professor of mathematics and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. In the late 1970’s to early 1980’s he developed several mathematical software packages to support computational science and engineering. These packages eventually formed the basis of MATLAB, a programming environment for algorithm development, data analysis, visualization, and numerical computation. MATLAB can be used to solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. Today, Professor Moler spends his time writing books, articles, and MATLAB programs.

Listen to what Professor Moler has to say about his life’s work:

Image credits